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Abstract. In this paper we propose a new version of the Controlled Random Search (CRS) algorithm
of Price. The new algorithm has been tested on thirteen global optimization test problems. Numerical
experiments indicate that the resulting algorithm performs considerably better than the earlier versions
of the CRS algorithms. The algorithm, therefore, could offer a reasonable alternative to many currently
available stochastic algorithms, especially for problems requiring ‘direct search’ type methods. Also
a classification of the CRS algorithms is made based on ‘global technique’ – ‘local technique’ and
the relative performance of classes is numerically explored.
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1. Introduction

A global optimization algorithm aims at finding a global minimizer or its close
approximation of a function f : S � Rn ! R. A point x� is said to be a global
minimizer of f if f� = f(x�) � f(x); 8x 2 S. We assume that the function f

is essentially unconstrained, i.e., all of its minimizers are in the interior of S. For
practical interests, especially in applied sciences and in engineering, it is required
that an approximation x̂� of a global minimizer of f be found with jf��f(x̂�)j < ".
However, in many applications the function of interest is not differentiable and it
is with this view in mind that the CRS algorithm was initially developed. CRS is
a ‘direct search’ technique and purely heuristic. It is a kind of contraction process
where an initial sample of N points is iteratively contracted by replacing the worst
point with a better point. The replacement point is either determined by a global or
a local technique. The global technique is an iterative process in which a trial point,
the ‘new’ point, is defined in terms of n+ 1 points selected from the whole current
sample of N points until a replacement point is found. Some CRS algorithms also
apply a local technique where the replacement point is searched for near a subset
of best points in the current sample.
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In the original version of CRS, CRS1 [Price, 1978], a simplex is formed from
the subset of n + 1 points. One of the points of the simplex is reflected in the
centroid of the remaining points (as in [Nelder and Mead, 1965]) to obtain a
new trial point and this process is repeated until a replacement point is found.
The contraction phase ends when some stopping condition is met. In the second
version, CRS2 [Price, 1983], a more sophisticated use is made of the simplexes
in obtaining new trial points. In the third version of the algorithm, CRS3 [Price,
1987], a Nelder-Mead-type local technique is incorporated.

Performances of the CRS were slightly enhanced in [Mohan and Shanker, 1988]
by introducing a larger simplex and by taking the weighted centroid rather than the
geometric centroid of n points. In order to make the CRS algorithm more efficient,
modifications to the CRS2 algorithms have been suggested in [Ali and Storey,
1994]. As a result two new versions, namely the CRS4 and CRS5 algorithms, were
proposed which improved the CRS algorithms significantly both in terms of the
number of function evaluations and run time. Of the two new versions the CRS4
algorithm proved robust when applied to some difficult practical problems [Ali,
1994; Ali et al., 1997].

In CRS4 a modification to CRS2 was sought by exploring the region around
the best point using a �-distribution [Cheng, 1978] instead of carrying out local
searches as in CRS3. The CRS5 algorithm uses a gradient based local search with
a pre-set probability instead of a Nelder-Mead-type local technique as in CRS3
or the use of �-distribution as in CRS4. Both CRS4 and CRS5 use Hammersley
sequences [Halton, 1960] rather than a uniform distribution to select the initial
N sample points. The aim in using the Hammersley distribution in generating the
initial points was to explore the search region more evenly. However, recently it was
shown in [Törn and Viitanen, 1996] that although the distribution of Hammersley
points is fairly even for regions of lower dimensions it is not necessarily so for
higher dimensions. The use of�-distribution in CRS4 was a salient feature whereby
it explores the region S when the N points are sparse and expedite its convergence
as soon as they form a dense cluster. In our new approach we modify CRS4 by
replacing its simplex approach as global technique with a quadratic approximation
[Palosaari et al., 1986].

2. CRS6, a New CRS Algorithm

The algorithm like the other CRS algorithms uses a set A of N points generated
at random in S. This set is then successively transformed until the function values
of all points in A are close enough. The transformation has a global part and a
local part. The global part consists of choosing three points from A instead of
n + 1, i.e., the best point, call it r1 = (r11; r12; . . . ; r1n), and two other points at
random, call them r2 and r3. For each coordinate i the algorithm determines the
minimum point p:i of the quadratic through the points r1i, r2i, r3i giving the new
trial point p = (p:1; p:2; . . . ; p:n). If this new point is better than the worst point in
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A it replaces the worst point. If it is a new best point then M local steps (the local
part) using an appropriate � distribution are made otherwise a new p is determined.
This is then repeated until the stopping condition is fulfilled.
1. Generate N uniformly distributed random points and store the points and

corresponding function values in an array A. Find the best and worst points in
A and their functions values: l; h; fl; fh. (The worst and best point in the array
are the points with highest and lowest function values respectively).

2. Choose randomly two distinct points r2; r3 from A; r2; r3 6= l and set r1 = l.
Compute p = (p:1; p:2; . . . ; p:n) as

p:i =
1
2

"
(r2

2i � r2
3i)f(r1) + (r2

3i � r2
1i)f(r2) + (r2

1i � r2
2i)f(r3)

(r2i � r3i)f(r1) + (r3i � r1i)f(r2) + (r1i � r2i)f(r3)

#
;

i = 1; 2; . . . ; n where rj = (rj1; rj2; . . . ; rjn), j = 1; 2; 3.
3. If p 62 S go to step 2. Evaluate fp. If fp � fh go to step 2.
4. Replace h by p in A and find h; fh in new A. If fp < fl then set p; fp as new

l; fl in A; else go to step 6.
5. Repeat M times or until the stopping condition is satisfied: Choose a new

trial point p = (x1; x2; . . . ; xn) from an appropriately scaled �-distribution as
follows. Each xi; i = 1; 2 . . . ; n, is found from the �-distribution with mean
the ith coordinate of the current best point l = (l1; l2; . . . ; ln) and standard
deviation

s = �d ; (1)

where
d = jli � hij;

h = (h1; h2; . . . ; hn)

and � is a user-supplied parameter. Evaluate fp. If fp < fh replace h by p in
A, find h; fh (and l; fl if fp < fl) in new A.

6. If the stopping condition is satisfied stop; else go to step 2.

Remarks.

1. A suggested value forN , the number of points in the arrayA, isN = 10(n+1).
It is however a heuristic choice and therefore could always be increased for
obtaining the global minimum with higher probability. This might be important
when solving problems with large n.

2. M is the number of points generated from the �-distribution in step 5 of the
CRS6 algorithm. The effect of M was examined by taking it as a fixed integer
and also as a variable M� . For variable M , initially we set M� = 0 and if a
new best point is found, M� is increased by one, b
M�c trial points are then
generated from the �-distribution and so on until the algorithm stops. By using
variableM the algorithm could switch from global explorations in early stages
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to progressively more local searches in later stages. We carried out an extensive
series of tests to see the effects of varying M and the results are reported in
[Ali, 1994].

3. � in (1) is a preset real number supplied by the user. It was tested on test
problems as well as on practical problems. The most suitable values of � were
empirically found to lie roughly in the interval [0:05; 0:2] with the overall best
value equal to 0:1 (see [Ali, 1994]).

4. �-distribution: The �-distribution on (0; 1) has the probability density function
given by

d(x) =
�(�+ �)

�(�)�(�)
x��1(1 � x)��1; 0 � x � 1; �; � > 0 ; (2)

with mean �

�+�
and variance ��

(�+�)2(�+�+1) . We use the algorithm of Cheng
[Cheng, 1978] for generating the �-variates. The values of � and � are deter-
mined from the given mean and given standard deviation as follows: Let
Ki = xi � xi be the difference between the upper and lower limits on the
ith coordinate. Let � =

�
li � xi

�
=Ki and A =

�
K2

i
�(1 � �)=s2� � 1, then

� = A�, and � = A(1 � �):

Clearly, the calculated parameters � and � for the �-distribution can take both
positive and negative values but to get reasonable distributions we restrict them
to values greater than or equal to one by ‘clipping’. Notice that in the limiting
case � = � = 1, the �-distribution is a uniform distribution. Hence, if our
required standard deviation is high we will merely be generating a realisation
from a uniform distribution.

5. The algorithm stops when all points in the array A are within agreement to a
fixed number of decimal places, i.e. jfl � fhj < �o, where �o is a preset small
number. For all numerical calculation we took �o = 10�4.

3. Numerical Investigation and Comparisons

In this section we compare the CRS6 algorithm with the original CRS1-CRS4
algorithms. CRS5, being a gradient based algorithm, is excluded from this compar-
ison as we are giving emphasis only on non-gradient based algorithms. Moreover,
within the previously modified versions the CRS4 algorithms proved to be the
best one in terms of the number of function evaluations, run time and reliability
in finding the global solution. Such an investigation has already been carried out
for some standard test problems as well as for some complex practical problems
[Ali, 1994; Ali et al., 1997]. We have coded all algorithms and run them on a SUN
Sparc ELC workstation. Random numbers were generated using the well tested
procedure given in [Tezuka and L’Ecuyer, 1991].
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Table I. The Test Problems

Function n Region S #min P � f� Ref

Branin (BR) 2 �5 � x1 � 10 3 1.00 0.3978 [1]
0 � x2 � 15

Goldprice(GP) 2 �5 � xi � 10 4 0.40 3.0000 [1]
Shekel5 (S5) 4 0 � xi � 10 4 0.35 �10.1532 [1]
Shekel7 (S7) 4 0 � xi � 10 7 0.35 �10.4029 [1]
Shekel10 (S10) 4 0 � xi � 10 10 0.35 �10.5364 [1]
Hartman3 (H3) 3 0 � xi � 1 4 0.70 �3.8627 [1]
Hartman6 (H6) 6 0 � xi � 1 4 0.70 �3.3223 [1]
Schubert3 (P8) 3 �10 � xi � 10 53 0.35 0.0000 [2]
Schubert5 (P16) 5 �5 � xi � 5 155 0.05 0.0000 [2]
Levy10 (L10) 10 �10 � xi � 10 1010 0.85 0.0000 [3]
Kowalik (KL) 4 0 � xi � 0:42 1 1.00 0.0003 [3]
Hosaki (HK) 2 0 � x1 � 5 2 0.65 �2.3460 [4]

0 � x2 � 6
Powell(PW) 4 �10 � xi � 10 1 1.00 0.0000 [3]

P � is the probability to find the global minimum based on steepest descent
[1]:(Dixon,Szegö), [2]:(Dekkers,Aarts), [3]:(Jansson,Knüppel), [4]:(Bekey,Ung)

3.1. TEST PROBLEMS

The 13 test problems have been taken from different global optimization text
sources, see Table I. For the convenience of the reader some characteristics of the
problems are given in the table, i.e., dimensionality n, region of interest S, number
of known local minima #min, probability to find the global minimum by a gradient
method starting from a random point P �, global minimum f�.

Our numerical experiments showed that the problems KL and PW have only
one minimum. In fact for PW the result was confirmed both analytically and
numerically. We therefore argue that these problems should not be used as test
problems. We have, however, used them here to see what accuracies could be
achieved by our CRS algorithm. Notice that P � for P16 is rather small compared
to the P � of the other problems.

3.2. TEST RESULTS

To begin with, we compare CRS6 with CRS4 on these problems for three inde-
pendent test runs. The results are summarized in Table II. In order to facilitate run
time comparisons for runs made on different computers we give the time of 1000
evaluations of the test function S5 which is 0.07. For an initial comparison of the
algorithms we have used 
M� ; 
 = 1 to generate points from the �-distribution.
For all calculations we took � = 0:1 (see remark 3 in Section 2). In Table II FE
denotes the average number of function evaluations, cpu the average run times, f�

w
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Table II. Comparison of CRS4 and CRS6

CRS4 CRS6
FE cpu f�

w
LM FE cpu f�

w
LM

BR 354 0.06 0.3978 0 205 0.05 0
GP 433 0.06 3.0000 0 152 0.05 0
S5 1364 0.17 �10.1487 1 526 0.10 1
S7 1551 0.23 �10.3984 0 538 0.11 0
S10 1670 0.28 �10.5319 0 522 0.12 0
H3 565 0.11 �3.8627 0 218 0.08 0
H6 1802 0.52 �3.3223 0 526 0.17 1
P8 824 0.12 0.0000 0 238 0.06 0
P16 1392 0.25 0.0000 0 415 0.11 0
L10 3102 1.23 0.0000 0 1160 0.41 0
KL 462 0.10 0.0003 0 169 0.05 0
HK 267 0.05 �2.3458 0 141 0.03 0
PW 1336 0.17 0.0000 0 963 0.37 0.0981 0

Total 15122 3.35 1/39 5773 1.71 2/39

FE: number of function evaluations; LM: number of non-global minima

the worst of three runs and LM the number of failures to locate the global minimum
in three independent runs. Because the results in the individual runs varied only
little three runs were considered enough for obtaining reliable average behaviour.
The average results were calculated for data for which the global minima were
achieved.

From the total figures in Table II it is clear that CRS6 reduces the number of
function evaluations and cpu time by about 60% and 50% respectively. For CRS6
the values obtained for f�w are the same as for CRS4 except for problem PW.

Next we compare both algorithms for variable and for fixed values of M . We
totalled the average results for three independent runs, see Table III. PL is the
problems for which only a local minimum was found and LM is the count of these.

Table III. Comparison of CRS4 and CRS6 over total figures

FE cpu LM PL M

CRS4 19162 4.13 2/39 S5,S5 3
CRS6 6605 1.69 3/39 S5,S10,H6 3

CRS4 19032 4.08 1/39 S5 b0:5M�c

CRS6 5713 1.49 1/39 H6 b0:5M�c

PL: Functions for which non-global minima were obtained

From Table III it is clear that CRS6 reduced the computational efforts signif-
icantly while obtaining all the global minima almost as successfully as CRS4.
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Table IV. Comparison of CRS versions based on FE for functions of Table I

CRS (�;N-M) (�; �) (�; q) (�; �) (q; �) (q; q) (q; �)

BR 415 694 544 478 211 222 198
GP 543 738 582 490 165 150 182
S5 2754 2986 2848 2027 830 741 680
S7 2652 2929 2308 1614 863 743 505
S10 2857 2970 2467 2033 585 662 509
H3 939 929 694 733 246 232 230
H6 6423 3855 3242 2378 995 704 645
P8 1371 1429 1078 872 267 287 234
P16 2973 3318 2612 1604 514 511 450
L10 27054 8988 6474 4395 1646 1630 1014
KL 895 508 472 491 243 235 137
HK 425 512 389 334 154 126 175
PW 3245 2184 1616 1583 808 1180 754

PL S5 – S5 S5 S5,S5� S5,S7,S10 H6

Total 52546 32040 25326 19032 7527 7423 5713

�: One of the runs did not converge

Notice from Tables II and III that for CRS6 the total results differs only little for
variables b
M�c with 
 = 1 and 0.5, except that CRS6 with 
 = 1 failed more
often. This indicates that the number of failures increases with M which is to be
expected since with larger M more local exploration is done giving less global
cover.

3.3. EFFECTS OF GLOBAL AND LOCAL TECHNIQUES

The essential difference between CRS4 and CRS6 is the use of quadratic approx-
imations in CRS6 as opposed to the use of simplexes in CRS4, while both are
using the �-distribution. To see how the effects of the proposed modification to
the CRS4 algorithm prevails its superiority over the others, we carried out a com-
prehensive numerical comparison. In order to facilitate the understanding and to
make the differences between the methods more explicit we append to each indi-
vidual algorithm name the appropriate parameters containing ‘(global technique,
local technique)’. Using this notation we thus write CRS2, CRS4 and CRS6 as
CRS(�,�), CRS(�; �) and CRS(q; �).

Motivated by the results of CRS(q; �) and since CRS(�; �) itself replaces the
local search in CRS(�;N-M) (N-M = Nelder-Mead) with �-distribution sampling
we performed more experiments using quadratic approximation. We thus also
compare with CRS(q,�), CRS(�; q) and with CRS(q; q). In both CRS(�; q) and
CRS(q; q) we use quadratic approximation using the three best points when a point
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found by the simplex for the former and by the quadratic for the latter has function
value less than or equal to the third best within A. (Note that a quadratic approxi-
mation through the three best points does not guarantee an improved solution.) We
do not order the entire array but keep the three best points on the bottom of the array
A and the worst point at the top. For the others we keep the worst and the best at the
top and bottom of A. The results are shown in Table IV where the parameters for
CRS(�; �) and CRS(q; �) are 0:5M� and � = 0:1. To make the comparison of the
methods easier we have also totalled the (average) number of function evaluations.
Except for CRS(�,�) the others fail occasionally to produce global minima for
some functions. Although CRS(q; q) proved to be the runner-up in terms of FE it
fails three times in 39 runs. However, the overall winner is CRS(q; �).

Table V. Comparison on total figures

FE cpu LM PL

CRS(�; q) 25326 9.87 1/39 S5
CRS(�; �) 19032 4.08 1/39 S5
CRS(q, �) 7527 2.56 2/39 S5,S5�

CRS(q; q) 7423 3.02 3/39 S5,S7,S10
CRS(q; �) 5713 1.49 1/39 H6

�: One of the runs did not converge

In Table V we compare the five best CRS algorithms from Table IV based
on total figures over the problems of Table I. As can be seen from the table the
dominant factor is the introduction of both the �-distribution and the quadratic
approximation in combination. It is also clear that only introducing the quadratic
approximation has already improved the results considerably. However, as Table
V indicates, the CRS(q; �) algorithm outperforms the rest in terms of both FE and
cpu.

4. Discussion and Conclusion

We have developed a new CRS method for global optimization. In this the sim-
plex search originally proposed by Price is replaced by quadratic search and �-
distribution sampling. The performance of the new method is quite effective and
efficient.

The comparisons in the previous chapter are fair in the sense that we have used
the same stopping condition. Although one could argue that the extrapolation from
numerical experiments has to be treated with caution since the test functions used
are well defined mathematical functions some of which having a small number of
local minima, our previous experiments with complex practical problems suggest
that these methods are very effective and superior to many currently available
stochastic methods ([Ali et al., 1997]). Consequently we feel that the method could
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be used as a general purpose global optimization technique. Research is continuing
to develop even more efficient CRS methods.

A disturbing fact concerning CRS algorithms is their totally heuristic nature with
no theoretical convergence properties. It cannot be asserted that the algorithm will
converge in probability to the global minimum for �o = 0. However, convergence
in probability is easily achieved for the CRS algorithms by adding an alternative
random sampling step in the global technique (Step 2 of CRS6) and by letting this
step be applied with a probability decreasing with each application.
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pp. 71–84.

Price, W. L.: 1978, ‘Global Optimization by Controlled Random Search’, Journal of Optimization
Theory and Applications 40, 333–348.

Price, W. L.: 1978, ‘Global Optimization Algorithms for a CAD Workstation’, Journal of Optimization
Theory and Applications 55, 133–146.

Tezuka, S. and L’Ecuyer, P.: 1991, ‘Efficient and Portable Combined Tausworthe Random Number
Generators’, ACM Transactions on Modelling and Computer Simulation 1, 99–112.

Törn, A. and Viitanen, S.: 1996, ‘Iterative Topographical Global Optimization’, in C.A. Floudas
and M. Pardalos (eds.) State of the Art in Global Optimization, Computational Methods and
Applications, Kluwer, Dordrecht, pp. 353–363.

jogo385.tex; 20/11/1997; 15:01; v.7; p.9


